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Is bone a Cosserat solid? 
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In a viscoelastic composite material including bone, acoustic waves undergo both 
geometric and viscoelastic dispersions as they propagate through the medium. The 
viscoelastic dispersion is characterized by an increase in phase velocity with increase in 
frequency, while the geometric dispersion is well-known. By comparing the dispersion 
data on these and other types of materials, it has been noted that the increases in the 
ultrasonic velocities for bones are much larger than those for simple viscoelastic solids 
and composites, suggesting an additional dispersion mechanism. This additional dispersion 
can be explained by Mindlin's theory on the Cosserat continuum with microstructure. 

1. Introduction 
When there is a geometrical discontinuity in a 
structural member or a machine part, such as a 
hole and a notch, a stress concentration (stress 
raiser) occurs at the discontinuity. In orthopaedic 
surgery, screw holes or other types of discon- 
tinuity are often introduced into a bone. The 
stress concentration is expressed by a theoretical 
stress-concentration factor which is the ratio of 
the maximum stress to the nominal stress, and 
which can be calculated from the theory of 
classical elasticity. It is generally known that the 
apparent fatigue and fracture strengths of some 
materials are affected by strain gradients. In 
bending fatigue tests, the smaller the specimen 
or grain size, i.e. the higher the strain gradient 
across the specimen, the higher the fatigue limit 
or strength. Also fractures in brittle materials 
and the onset of static yielding in ductile materials 
in the presence of stress concentration, occur at 
higher loads than might be expected on the basis 
of the stress-concentration factor [1-3] .  

These results suggest the need for an extension 
of the theory of elasticity to include strain 
gradients. The simplest extension is the well- 
known Cosserat theory [4] where an additional 
force-like quantity, couple-stress (couple per 
unit area), is taken into account in addition to the 
usual stress or force-stress (force per unit area) 
of classical elasticity. Just as strain is associated 
with stress, so the rotation gradient, curvature, 

is associated with couple-stress. According to 
Mindlin [5], in the linear Cosserat theory for an 
isotropic elastic material, there is an additional 
modulus of elasticity with dimensions of force, 
the ratio of couple-stress to curvature or twist, 
i.e. a modulus of bending and twisting. The 
square root of this bending-twisting modulus to 
the usual shear modulus has the dimension of 
length. This length, I, is a material property which 
characterizes the entire difference between 
analogous equations or solutions with and without 
couple-stress. The larger l may be, the greater is 
the difference. In single crystals and amorphous 
materials such as glasses or plastics, I is probably 
submicroscopic; it might be of the order of the 
radius of the root of a crack. In polycrystalline 
or granular materials or generally in any material 
with microstructure, 1 may be considerably larger. 
Based on the Cosserat or couple-stress theory, 
Mindlin [5] has also recalculated the stress- 
concentration factors around a circular hole 
in two dimensions. His results show that, both 
in a field of simple tension and in a field of pure 
shear, the stress-concentration factors depend on 
both Poisson's ratio and the ratio of  the radius, 
r, of the hole to the material constant, rather 
than being the usual constant values 3 and 4, 
respectively. As r/l decreases, so does the stress- 
concentration factor. 

Koiter [6] suggested three simple but crucial 
tests for the numerical determination of the 
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additional elastic constants l and r/ (a non- 
dimensional number similar to Poisson's ratio) 
in an isotropic material: 1. torsion of a cylindrical 
bar; 2. cylindrical bending of a rectangular plate; 
and 3. pure bending of a rectangular beam. In his 
experiment on aluminium alloy (2014-T3) using 
Method 3, Schijve was unable to detect an influence 
of couple-stresses on the stress concentration 
[7]. Employing Method 2, Ellis and Smith [8] 
have investigated both annealed and cold-worked 
pure aluminium sheets and annealed low-carbon 
steel sheets. They concluded that couple-stress 
effects would not be revealed until the plate 
thickness approaches grain size, and that under 
such conditions, the continuum theory will break 
down. Gauthier and Jahsman [9] also reported 
on their unsuccessful attempt to detect "non- 
classical" effects from static torsion experiments 
on aluminium.epoxy composite cylinders, inter- 
preting that the effects were masked by material 
inhomogeneity. On the other hand, Perkins and 
Thompson [10] have shown that the apparent 
shear modulus of an  elastic cylinder bonded to  

inner and outer rigid cylinders appears to follow 
the theoretical curve based on the linear elastic 
couple-stress theory [11] and on additional 
assumptions. A closed-cell polyvinyl chloride 
foam was used as the elastic medium and the 
couple-stress constant l was set equal to the 
average value of the cell diameter of the foam 
as determined by optical measurements. The 
apparent shear modulus was determined from 
the measured resonant frequency of the system. 
Also, Yang and Lakes [12-14] reported on the 
determination of the characteristic length I' 
(=l(1 +r~)l/2)---0.14mm for human femoral 
compact bone, which appears to be more con. 
vincing evidence of the couple-stress effects. In 
addition, their results on polymethyl methacrylate 
(PMMA) with the same experimental set-up, 
show that PMMA behaves classically. 

Although several interesting theoretical studies 
have been reported on wave propagation in a 
generalized continuum, there have been no experi- 
mental investigations, particularly on ultrasonic 
wave propagation, as far as these authors are 
aware (except for the present investigation). For 
a linear isotropic Cosserat continuum, Mindlin 
and Tiersten [11] have shown that there is a 
non-dispersive dilatational wave, as in the usual 
theory, propagating at the usual velocity. How- 
ever, there are now two rotational waves: one 
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propagating and the other non-propagating. Both 
rotational waves are dispersive. The group velocity 
of the propagating rotational wave increases with 
increasing wave number (or frequency) and 
increasing l. The non-propagating wave produces 
a boundary layer effect. On the other hand, in a 
linear elastic solid with microstructure (Mindlin 
[15]) both longitudinal and transverse velocities 
increase with increasing wave number. Parfitt 
and Eringen [16] have found that in an infinite 
isotropic 'knicropolar" elastic solid, there exist 
four types of waves propagating with four distinct 
speeds: vl and v2 (longitudinal), and va and v 4 
(transverse). Of the last three dispersive types 
(v:,  va, v4), v2 and va (or squared velocities 
in their expressions) decrease significantly, but 
v4 increases slightly, with increasing frequency 
(~o = 0--" o~). 

In order to place the present study in proper 
perspective, and at the same time complement 
this Introduction, a short historical review of 
generalized continuum theories is presented 
in Section 2. However, this is not intended to be a 
critical review. Since there appears to be some 
evidence of couple-stress effects in bone, as 
mentioned previously, the linear elastic Cosserat 
theory [I1] is summarized in the first part of 
Section 3, emphasizing the effects of couple- 
stresses on plane wave propagation. Also in 
Section 3 is included a brief summary of the 
theory of linear elasticity with microstructure 
[15], which seems to describe more satisfactorily 
than does the Cosserat theory the experimental 
data on ultrasonic velocities in human bones. 

2. Historical review of generalized 
continuum theories 

Since the literature on the generalized continuum 
theories is enormous, this review is intended to be 
as brief as possible, and is mainly concerned with 
some of the highlights closely related to the 
present paper. 

In his unfinished work, Poisson (1842) made 
an attempt to include directionally dependent 
"molecular" interactions in the elastic potential 
energy [17, 18]. Cauchy (1851) first extended 
the continuum theory to accommodate short 
wavelengths, consequently effects of the atomic 
structure of solids. His work would, if completed, 
correspond to the inclusion of all the gradients 
of strain, in addition to the strain, in the potential 
energy density [19]. The couple-stress theory 



initiated by Voigt (1887) [20, 21] has been 
elaborated by the Cosserat brothers (1909) [4], 
whereas Duhem (1893) considered, a volume 
element or unit cell as a collection not only :of 
points but also of directions associated with the 
points [22]. The corner singularity which exists 
in the absence of couple-stresses, was noted by 
Reissner (1944) [23]. 

Ericksen and Truesdell (1958) developed 
further the purely kinematic description of the 
Cosserat continuum, emphasizing the one- and 
two-dimensional cases of rods and shells, without 
exploring the theory of the motion of the con- 
tinuum [24]. Gttnther (1958) related his study 
on the kinematics and statics of the three- 
dimensional Cosserat continuum to dislocation 
theory [25]. In 1960 there appeared several 
modern derivations of the couple-stress theory; 
Rajagopal [26], Truesdell and Toupin [27], 
Aero and Kuvshinskii [28], and Grioll [29]. 
This so-called "Cosserat theory with constrained 
rotations" [30] takes into account the first 
gradient of rotation, i.e. eight of the eighteen 
components o f  the first strain gradient. Schaefer 
(1962) solved several explicit boundary value 
problems for a two-dimensional Cosserat medium 
so as to illustrate some of the novel features 
of the theory [31]. Toupin (1962) developed the 
complete first strain gradient theory in a nonlinear 
form [32]. At the same time, Mindlin and Tiersten 
(1962) [11] have linearlized Toupin's constitutive 
equations and solved a number of problems in 
the linear theory of elasticity with couple-stresses, 
e.g. wave propagation, vibration, stress functions, 
nuclei of strain, and others. In addition, they 
showed the interrelationships among the different 
derivations of the Cosserat equations by Aero 
and Kuvshinskii [28], Grioli [29], and Toupin 
[30]. Mindlin (1964) [15] formulated a linear 
theory of a three-dimensional elastic continuum 
which has some of the properties of a crystal 
lattice as a result of the inclusion of the idea of 
the unit cell into the theory. The mathematical 
model of a microvolume element or cell is a 
linear version o f  the deformable directors of 
Ericksen and Truesdell [24]. If the cell is made 
rigid, the equation s reduce to those of a linear 
Cosserat continuum [4]. Eringen and Suhubi 
(1964) introduced a general theory of a nonlinear 
"microelastic" continuum in which the balance 
laws of continuum mechanics are supplemented 
with additional ones, and the intrinsic motions of 

microelements contained in such macrovolume 
are taken into account [33, 34]. Green and 
Rivlin (1964) have established the basis of a very 
general theory which includes strain-gradients of 
any orders [35, 36], which they call "multipolar 
continuum mechanics". 

Additional references are given in Tiersten and 
Bleustein (1974) [37], Eringen (1968) [38], 
and more recent articles on generalized continua. 

3. Theoretical background 
3.1. Linear elastic couple-stress theory 

[11] 
In summarizing the work of Mindlin and Tiersten, 
their dyadic or polyadic notation will be used 
[39,401. 

3. 1, 1. The Cosserat equations 
Consider the motion of a portion of a material 
volume V, bounded by a surface S with outward 
normal n. Across S there act force-stress and 
couple-stress vectors, t n and mn, while within V 
there act body-force and body-couple vectors, 
f and c. The equations for the conservation of 
mass, balance of linear and angular momenta, 
and conservation of mechanical energy are, res- 
pectively, expressed by: 

d r y  -~ pdV = 0 (1) 

d fvvpdV = fstndS+fvfpdV (2) dt 

db x vpdV = (r X t n + mn)dS 

+ fv(rX f + c ) p d V  

d 
d t  f (~v'v + U)pdV 

(3) 

= fs (tn'v+ Im,"  V x v)dS 

+ f v ( f ' v +  ~c 'V  x v)pdV (4) 

where d/dt is the material thne-derivative, p the 
mass density, r the spatial position vector from 
a fixed origin, v (= dr/d0 the material velocity, 
U the internal energy per unit mass, I7 = a/ar, 
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and �89 V x v the vorticity. The usual force-stress'~ 
dyadic ~r and the couple-stress dyadic la are defined 
as follows: 

t n = n. x and m n = n' la (5) 

Applying the divergence theorem to Equations 
1, 2, 3, 4, together with 5, the Cosserat equations 
are obtained: 

V - ' r  + O f = p ~' (6)  

V -  la+ pc +'r~. I = 0 (7)  

V-"r s +  �89 V ' l a + P f + � 8 9  p c = p ~ '  (8) 

pL) = ~ s :  V v +  l la:VV x v (9) 

where ~ = dv/dt, I ==- Vr, and -r s is the symmetric 
part of-r. Equations 8 and 9 may be rewritten, 
respectively, as: 

V" T S q- �89 X V "l aD -}" pf + �89 x pc = p~r 
(10) 

p U =  TS: VVq- �89 bID: VV X V (11) 

where la D is the deviator of la : 

lad = g _  ~la:l l  (12)  

Since the scalar of the couple-stress and the anti- 
symmetric part of the force-stress are left indeter- 
minate in the Cosserat theory, it is an incomplete 
theory but more tractable, in contrast to the more 
extended theories such as the double-stress theory 
[35, 36], strain-gradient theory, or theory of 
microelasticity. 

3. 1.2. L inear i za t i on  
When linearized, Toupin's equation [32] for the 
specific internal energy W can be expressed in 
terms of the following variables: 

E = �89 + uV) and K = �89 x u (13) 

That is, 

po U=- W = �89 + E :b: K + �89 e 
(14) 

From this, the linearized forms of Toupin's 
constitutive equations result: 

x s  ~W 
= - -  = C : e + b : K  

bE 

OW 
B D = - - =  t : b + K : a  

For the triclinic system (most anisotropic), there 

are 36 independent components of a, 48 indepen- 
dent components of b, and the usual 21 indepen- 
dent components of c, each of the three being 
tetradic. However, the internal energy-density 
of an isotropic material has a much simplified 
form: 

W = 2r/t~: K + 2~'t~:t% + �89 ~ + pE: l 

from which 

s = X e s I + 2 p t  

la D 4r?K + ' = 4r/K e 

(17) 

(18) 

where 3, and p are Lam6's constants; ~7 and 7' 
the couple-stress constants; t% the conjugate of 
t~; and ts  the scalar of t .  In other words, there are 
only the four independent constants for the 
isotropic medium. 

3. 1.3. Wave mo t i on  
When Equations 13 and 18 are inserted in 
Equation 10, the displacement-equation of motion 
is obtained: 

~,~V2U "~ ()k "r ].l)VV "u -Jc ~V2V x ~7 x u 

+ pf + �89 X c = pii (19) 

where ii = ~ u / a t  2. Note that r/' does not appear 
in Equation 19, In the absence of body-force and 
body-couple, Equation 19 becomes: 

/~V2u + 0 t + / . t ) V V ' u  + ~ V 2 V  x V x u = pii 

(20) 
Taking the divergence and curl of Equation 20,  
the following equations are obtained, respectively, 

c~V 2 9 "u = V -ii (21) 

c~(1 -- I:V2)V 2 9 x u = V x l l  (22) 

where 

(15) 

(16) by couple-stresses. For the plane wave, e.g, 

V x u = dA exp [ i~(n ' r - -c t ) ]  

= dA exp [i(~n-r -- cot)] 

12 = r///.t 

c~ = (X + 2p)lp 

c~ = P/P. (23) 

Thus, the dilatation is propagated non-dispersively, 
with velocity el,  as it is without couple-stresses. 
However, propagation of the rotation is influenced 

(24) 
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where d is a unit vector, A the amplitude, ~ the 
wave number, n the unit wave normal, c the phase 
velocity, and w the circular frequency. Substituting 
Equation 24 in Equation 22, the following 
equations are obtained: 

c 2 = c~(l+12~ 2) 

co 2 = ~2c~(1 + 12~ 2) (25) 

the latter giving the two roots for ~= : 

~ = �89 + 4 1 % ~ / c ~ )  ~ - -  11 
(26) 

~ = - � 8 9  + 4 ~ / c ~ )  ~ + 1] 

Since I is known to be real, there are two dispersive 
rotational waves: one propagating and the other 
non-propagating. The group velocity of the real 
w a v e ,  

do) 
= c~(1 + 2 /2~) / (1  + l ~ )  ~/2 (27) 

d ~  

increases monotonically with increasing ~al. This 
increase might produce a detectable effect of 
couple-stress in high-frequency vibrations. If 
~al is small, i.e. if the wavelength is large in com- 
parison with the material constant l, the group 
velocity is approximately the same (c~) as it would 
be without couple-stresses. 

3.2. Linear elastic microstructure theory 
[15]. ' 

Here, Mindlin's tensor notation will be used in 
order to avoid introducing a new system of sym- 
bols. 

3.2. 1. Kinematics and definitions 
For a material volume V, bounded by a surface 
S, let X i ( i =  1,2,3) be the rectangular Cartesian 
components of the material position vector 
measured from a fixed origin, and x i the com- 
ponents of the spatial position vector in the same 
rectangular frame. The components of  (macro)dis- 
placement of a material particle are defined as 

ui  = x i  - -  X i  (28) 

Embedded in each material particle there is 
assumed to be a microvolume V' in which X~ and 
x[ are the components of the material and spatial 
position vectors, respectively, referred to axes 
parallel to those of the x i ,  with origin fixed in 
the particle. Therefore, the origin of the 
coordinates x" moves with displacement u i. The 

components of micro-displacement are defined as 

u[ =- x; -- X; (29) 

The absolute values of the displacement-gradients 
are assumed to be small in comparison with unity 
so that we may write 

~uj 0uj 
- -  ~, =- ~iuj; uj = uj(xl, t )  (30) 
OX i axl 

, , ~ - - - = ' '  '=Uj(Xi,Xi,t) (31) 
~x; ~x; ~uj ; uj 

where t is the time. Also assume that the micro- 
displacement can be expressed as a sum of pro- 
ducts of specified functions of the x~ and arbitrary 
functions of the x i and t. In a linear approxi- 
mation, only a single term of the series is retained: 

uj  = x / ~ k j ;  ~ki  = ~ j ( x i ,  t)  (32) 

then the displacement-gradient or microdefor- 
mation is 

O[u] = ~ i j  (33) 

which is taken to be homogeneous in the micro- 
medium V' and inhomogeneous in the macro- 
medium V. The symmetric part of ~ij is micro- 
strain: 

~(ij)  - �89 + ~ j l )  (34) 

and the antisymmetric part is the microrotation: 

- -1  ~t~;l : ~ ( ~  - ~J~) (35) 

From these definitions, the following three quan- 
tities are defined: the usual strain (or the macro- 
strain), a relative deformation and a micro- 
deformation (macrogradient of  the microdefor- 
mation), respectively, 

ely =- �89 + 3 ju i )  (36) 

71j - 31uj - -  t)ij  (37) 

Kijk --= ~i~j~ (38) 

For the potential energy-density (potential 
energy per unit macrovolume), W, assume that 
W is a function of the forty-two variables e~j, 
7~j and Kijk : 

W = W(eij  , 7 i j ,  ~r (39) 

Then, the Cauchy stress riy, the relative stress 
oij and the double stress /zij ~ are defined as 
follows: 

OW 
"ri.i = - rj i  (40) 

Oeij 
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aW 
oij -= (41) 

aT~j 
aW 

/%~ - aKO~ (42) 

3.2.2. Stress.equations of motion and 
constitutive equations 

Let 3~ be the body-force per unit volume, t] the 
surface-force per unit area (stress vector or 
traction), q~j7~ the double force per unit volume, 
and Tj~ the double force per unit area. From the 
variational equation of motion [15], then follow 
the twelve stress-equations o f motion: 

ai(r U + ou) + f j  = piij (43) 

1 ,.~2 ~k  (44) 

and the twelve traction boundary conditions: 

tj = ni(r  U + oU) (45) 

Tjk = nit%-k (46) 

where p '  is the mass of micromaterial per unit 
macrovolume, and d~ is a linear combination of 
products of the edges d i of a parallelepiped with 
the microvolume V'. The linear equations of a 
Cosserat continuum [4] are obtained by putting 
~qj) = 0. Then a(u) = ri /and/aiq~) = 0; and there 
remain #iOT,] (the Cosserat couple-stress) and 
otU 1 (the antisymmetric part of an asymmetric 
stress ~'ii). However, in the present theory, the 
Cauchy stress rij is symmetric and o[u I is the 
antisymmetric part of the asymmetric relative 
stress a U. 

For potential energy-density a homogeneous, 
quadratic function of the forty-two variables 
etj,  "YU, KOTe, is taken to be 

14 I = �89 q- �89 

1 (47) + ~(liflelmnKUkglran + d i j h ~ T l j K k ~  

+ fi]TetmKi.ikelm + gukt'yijeM 

0nly 903 of the 1764 coefficients in Equation 47 
are independent. From Equation 47 together with 
Equations 40, 41 and 42, the following constitutive 
equations are obtained for the most anisotropic 
material: 

7"pq = Cpque U Jr gUpq'YU + glJkpqKi]Te (48) 

Opq = gpqi jeu -1- biypq'yi j -[- dpqijkKi]Te (49) 

~lpq r = fPqrUeij -}- dupqr'Yij + tlpqrljk K i17~ ( 5 0 )  
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Figure 1 Sketch of possible configuration of real branches 
of dispersion curves. LA = longitudinal acoustical; TA = 
transverse acoustical; SO = shear optical; TO = transverse 
optical; LO = longitudinal optical; if, T = low frequency 
approximation; Le, T e = classical elasticity. 

In the case of an isotropic material the number of 
independent coefficients is reduced to only 18. 

3.2.3. Plane wave propagation for long 
wavelengths 

By substituting plane wave solutions, for example, 
of the types 

u i = ui(x~ , t) and ~ij = ~ j ( x l ,  t) (51) 

in the displacement-equations of motion for an 
isotropic material [15], it has been found that 
there exist eight branches of real waves in the 
dispersion curves of frequency against wave 
number. That is, the six optical branches: shear 
optical (SO), rotational optical (RO), longitudinal 
optical (LO), longitudinal dilatational optical 
(LDO), transverse optical (TO), and trasverse 
rotational optical (TRO); and the two acoustical 
branches: longitudinal acoustical (LA)and  trans- 
verse acoustical (TA). SO, TA, TO and TRO 
are degenerate. In Fig. 1 only the acoustical 
branches and three lower optical branches are 
shown together with the corresponding branches 



T A B L E I Frequency dependence of  the ultrasonic velocities in PMMA at 22.2 ~ C [49] 

Frequency (MHz) Longitudinal (km sec -~ ) Shear (km sec -x) 

6 2.7564 1.4015 
10 2.7605 1.4048 
18 2.7642 1.4051 
20 2.7651 1.4057 
30 2.7655 1.4061 

of low frequency approximation and of classical 
elasticity. 

4, Discussion 
Based on Cauchy's theory on the dispersion of 
light (1830) [41], Powell (1841) computed the 
velocity V of a wave propagating along one axis 
of a cubic lattice structure as a function of wave- 
length X with point masses spaced a from one 
another. V is given by 

I sin(zra/X) [ 
v = v~ (52) 

7ra/~ 

where V~ is the velocity for infinite wavelength 
[42]. However, Powell failed to consider the 
frequency as a function of the wavelength. The 
curve of velocity against reciprocal wavelength 
appears to be perfectly normal at the point X = 2a; 
not so, however, for the frequency f against 
reciprocal wavelength, as noted by Kelvin (1883) 
[43]. The angular frequency co(= 2~f) as a func- 
tion of the magnitude of the wave vector, k, 
turns out to be 

co(k) = C[sin �89 (53) 

where C is a constant that is a function of the 
force constant and the mass. Equation 53 shows 
that co(k) is a straight line for small values of k ,  
i.e. large values of wavelength, which is in agree- 
ment with the earlier calculations. The values of 
k must be limited to the range 

71 71" 
- - <  ~ < -  (54) 

a a 

in order to remove the ambiguity that for a given 
frequency the wavelength is not completely 
determined. Born and K~rmgn (1912) investi- 

gated the propagation of waves in crystals and 
rediscovered Kelvin's analysis [44]. Brillouin 
(1946) summarized these investigations, together 
with his own contributions, in his book [45]. 

When acoustic waves are propagated in a fibre- 
reinforced viscoelastic composite material, they 
are dispersed by two distinct mechanisms, visco- 
elastic and geometric dispersions. The geometric 
dispersion is expressed by Equations 53 and 54 
in which the interfibre spacing corresponds to 
the distance of point masses or atomic spacing. 
In other words, it is characterized by the existence 
of passbands and forbidden bands, and by a 
wave-filtering phenomenon, in addition to the 
constant group or phase velocity for long wave- 
lengths. In the viscoelastic dispersion, on the 
other hand, the phase (or group) velocity increases 
with increasing frequency, approaching a plateau 
at high frequencies, and together with the charac- 
teristic frequency dependence of attenuation 
[46, 47]. 

Sutherland and Lingle [48] investigated 
geometric dispersion by measuring the phase 
velocity and attenuation in the elastic fibrous 
composites of AI-W (2.2 and 22.1% W by volume), 
showing that the phase velocity Vp decreases with 
increasing frequency f within each passband, e.g. 
Vp =5.99  to 5.42kmsec -1 for f = 0 . 6 3  to 3.57 
MHz in a 2.2mo1% W-A1 composite. Table I 
shows the ultrasonic velocities in PMMA at 22.2 ~ C 
in the frequency range from 6 to 30 MHz, reported 
by Asay et al. [49]. PMMA is a typical viscoelastic 
solid. The relative increases of longitudinal and 
shear velocities in this frequency range (24 MHz) 
are only 0.33% in both cases. Sutherland [50] 
also tried to separate geometric and viscoleastic 
dispersions in two fibre-reinforced viscoelastic 

T A B L E I I Measured phase and group velocities in the human skull (diploe) [51 ] 

Frequency (MHz) Phase velocity (kin sec -1) Group velocity (kin sec -1) 

0.5 2.19 2.84 
1.5 2.53 2.81 
3.0 3.87 3.11 

Relative change (%) 24 28 
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T A B L E I I I A Frequency dependence of the ultrasonic velocities in the human femur at room temperature; longi- 
tudinal velocity (kin sec -1 ) 

Mode Propagation Displacement Frequency (MHz) Relative 
direction, N direction, U 2 5 10 change (%) 

aL [0 0 1 ] [0 0 1] 4.18 4.24 4.30 2.8 
~/L [1 00] [1 00] 3.36 3.50 3.72 9.7 
45L [l/x/2 0 1/,,/2] ~ [1/~/2 0.1/,,/2] 3.84 3.87 3.95 2.8 

TAB LE II IB Frequency dependence of the ultrasonic velocities in the human femur at room temperature; trans- 
verse velocity (km sec- 1) 

M o d e  P r o p a g a t i o n  Displacement Frequency (MHz) Relative 
direction, N direction, U 1 2 5 change (%) 

aT [0 0 1 ] [ 1 0 0] 1.98 2.03 2.15 7.9 
3,T h [1 0 01 [0 1 01 1.85 1.84 1.98 6.6 
3,T 3 [1 00] [0 0 1] 2.02 2.06 2.17 6.9 
45Th [l/x/2 0 1/~/2] [010] 1.87 1.96 2.06 9.2 
45Tv [1/x/2 0 1/x/2] - [-- 1/x/2 0 l/x/2] 2.14 2.16 2.24 4.5 

materials, a cloth-laminate quartz phenolic and 
stainless steel wires embedded in an Epon 828-Z 
matrix, finding that the viscoelastic contribution 
in these composites is small. 

Table II shows the measured phase and group 
velocities (longitudinal) in the human skull (diploe) 
in the frequency range from 500 kHz to 3 MHz by 
Fry and Barger [51]. The relative changes in phase 
and group velocities are 24 and 28%, respectively, 
in this small frequency range (3.5 MHz). However, 
these authors have not given any explanation of 
the dispersion for diploe. 

We have also reported on the frequency 
dependence of the ultrasonic velocities in human 
femoral cortical bone along eight unique orien- 
tations, employing a pulse through-transmission 
technique, as shown in Table III [52]. The respect- 
ive relative velocity changes for the covered 
frequency ranges are given in the last column. 
The frequency range for longitudinal velocity 
measurements was from 2 to 10MHz, whereas 
the transverse velocity measurements were done 
for the range from 1 to 5 MHz. In addition, our 
unpublished work shows that the frequency 
dependence of the ultrasonic velocities in poly- 
styrene is negligible, with the same experimental 
set-up as for the human femur, in the frequency 
range of 2 to 20 MHz for longitudinal waves and 
of 1 to 10 MHz for transverse waves. Although the 
frequency dependence of the ultrasonic velocities 
for the femur is not as large as that for the skull, 
it is still too large in the narrow frequency ranges 
compared to that for PMMA. This suggests that 
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there may be another dispersion mechanism 
involved in addition to the viscoelastic contri- 
bution. Previously [52], we have tried to attribute 
this frequency dependence for the human femur 
to viscoelastic effects alone, though unsatisfac- 
torily. 

The linear couple-stress theory [11] has been 
found to be reasonably satisfactory in explaining 
the torsion data on human compact bone [12-14],  
as mentioned previously. However, this theory 
shows, for an isotropic medium, that only the 
rotational waves are dispersive, whereas the 
dilatational wave is not influenced by couple- 
stresses. In contrast, the more generalized con- 
tinuum theories (e.g. Mindlin's structured Cosserat 
theory [15]) indicate that both the longitudinal 
and transverse velocities (acoustical branches) 
increase with increasing wave number (or 
frequency), even in its low frequency approxi. 
mations, see Fig. 1, which is consistent with the 
preliminary studies on bone. 
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